HERALD HYDROBIOLOGY

Ученые труды А.И.Набережного

Изучение коловраток в Молдавии

КРАТКИЙ ИСТОРИЧЕСКИЙ ОЧЕРК ИЗУЧЕНИЯ КОЛОВРАТОК И ЭКОЛОГИЧЕСКИЕ УСЛОВИЯ ИХ ОБИТАНИЯ В ВОДОЕМАХ МОЛДАВИИ
Интерес к коловраткам известен издавна. Первые упоминания о них появились с открытием микроскопа в начале VIII века. Впервые описание коловратки сделал J. Harris в 1696 г., а первые зарисовки — А. Левенгук (I703-I7I3). Последующие 100 лет были периодом описания новых видов коловраток и попыток разобраться в их систематике. Однако только в 1838 г. С. M. Ehrenberg предпринял попытку привести коловраток в естественную систему, которой придерживались большинство натуралистов XIX столетия. Ему же принадлежит приоритет первого описания самца коловраток. Начиная с этого времени расширяются исследования, посвященные описанию новых видов и родов коловраток, сравнительной анатомии и морфологии, эмбриологии, систематике, биологии и другим сторонам их жизнедеятельности.
Обстоятельный исторический обзор исследований коловраток приведен в монографических сводках E. Bartoš (1959), L. Rudescu (I960), Л. А. Кутиковой (1970) и др. Мы не затрагиваем также морфоанатомического строения коловраток, в полной мере раскрытого в приведенных сводках, а также в учебниках зоологии и методических пособиях по зоологии для ВУЗов. Отметим лишь, что появление обстоятельного отечественного определителя по коловраткам Л. А. Кутиковой (1970) во многом активизировало изучение этой группы гидробионтов в самых различных районах нашей страны. Они совпали с периодом развертывания фундаментальных исследований биологии, питания и пищевых взаимоотношений, экологии, физиологии и других сторон жизнедеятельности коловраток. Они существенно дополнили информацию о роли коловраток в биотическом балансе разнотипных водоемов.
Первые сведения о коловратках водоемов Молдавии встречаем в работе R. Rodewald (1935). Весной 1935 г. он обследовал речку Бык в пределах г. Кишинева (станции Вистерничены и Ревака), а также небольшой прудик с. Злоти Чимишлийского района и установил 66 видов и вариететов коловраток из родов Braсhionus (сalyciflorus, quaridentatus, rubens, leydigii И др.), Keratella (cochlearis и quadrata), Cephalodella (gibba, gracilis, catellina), Filinia (longiseta, cornuta, terminalis), Dicranophorus (caudatus, rosa), Trichocerca, Polyarthra, Notholсa, Lepadella, Colurella. С фаунистической и зоогеографической точек зрения интерес представляло нахождение Notommata doneta (впервые для Европы), Pleurotrocha constricta, Proales micropus, Cephalodella gusuleachi, Dicranophorus armatus lepsii, Lepadella amphitropis и ряда других видов. Их обитание и в других водоемах республики подтвердили наши более поздние исследования.
Несколько ранее J. Lеpşi (1932) указал 16 видов коловраток в придунайских лиманах Кагул, Ялпух, Катлабух, Китай, Кугурлуй, а также в припрутском озере Делеу. Среди выявленных им видов заслуживают внимания Brachionus fulcatus, Br. diversicornis hоmoceros, Hexarthra mira и др.
Следует упомянуть также список коловраток этих же водоемов и низовьев Дуная, приведенный H. Spandl (1926). Нашими исследованиями (Набережный, 1979) на примере озера Кагул подтверждено нахождение Lepşi и Spandl Platyias patulus, Platyias quadriсornis, Colurella adriatica, Еudactylota eudactylota, Ploesoma lenticulare, Triсhocerсa longiseta и др.
Этими работами исчерпываются сведения о коловратках водоемов Молдавии в период 19I8-1940 гг.
Планомерные комплексные гидробиологические исследования водоемов Молдавии, включая всестороннее изучение коловраток, началось только после Великой Отечественной войны. В их задачу входили выяснение закономерностей развития биологических процессов во внутренних водоемах республики и разработка научных основ рационального использования биологических ресурсов. Было доказано, что большая часть водоемов республики, особенно прудовой фонд, водохранилища на малых реках, Дубоссарское водохранилище на реке Днестр и пойменные водоемы Прута и Днестра потенциально богаты биологическими ресурсами.
Изучены видовой состав, распространение, динамика численности, некоторые стороны экофизиологии, биологии, трофических связей, роли в процессах самоочищения и общей продуктивности; внесены существенные дополнения в интенсификацию процесса культивирования перспективных видов коловраток и др.
Общеизвестно, что условия, в которых живут водные организмы, в данном случае коловратки, имеют решающее значение для их качественного и количественного развития. Молдавия, несмотря на достаточно густую гидрографическую сеть, сравнительно бедна водными ресурсами (Ярошенко, Пояг, 1966). Площадь всех ее водоемов составляет примерно 65,0 тыс.га, из них реки занимают 34,0 тыс.га, пруды и малые водохранилища — 18,0 и озера и водохранилища 13,0 тыс.га.
В республике насчитывается 3085 водотоков общей протяженностью 16I53 км (Бевза, 1964; Ярошенко, Пояг, 1966), из которых 3007 суммарной протяженностью 10651 км являются малыми реками (длиной до 100 км). Все реки Молдавии входят в бассейн Черного моря.
Наиболее крупная река — Днестр, который со своими многочисленными притоками обеспечивает основные потребности хозяйственного, питьевого, промышленного и сельскохозяйственного водоснабжения республики. Водная площадь русловой части Днестра в пределах Молдавии не превышает 10 тыс. га. Протяженность Днестра — 1352, в том числе в пределах Молдавии — 657 км.
По гидробиологическому режиму Днестр близок к рекам горного типа с резко выраженным горным верховьем, растянутым предгорным участком и коротким равнинным низовьем. Это подтверждается также особенностями уклона реки, распределением внутригодового жидкого стока, значительным содержанием взвешенных веществ (до 9,2 кг/м3) и паводковым режимом на протяжении всего года (до 16 паводков в год). Все указанное обусловливает крайнее непостоянство режима его уровня и степени проточности (Ярошенко, 1957).
В 140 км от устья Днестра отделяется левый рукав Турунчук, снова соединяющийся с Днестром через озеро Белое в 20 км от устья.
В пределах Молдавии в Днестр впадают 1686 прогонов общей протяженностью 8835 км, но из них 1547 имеют длину менее 10 км. Почти все притоки зарегулированы. К наиболее крупным относятся Реут, Икель, Бык, Ботна (правобережные), Каменка, Рыбница и Ягорлык (левобережные).
Вторая по величине река, протекающая на территории Молдавии, Прут, последний крупный левобережный приток Дуная. Длина реки 989 км, ив них в границах республики — 695 км. На протяжении 715 км по р. Прут проходит государственная граница между СССР и СРР (Ресурсы поверхностных вод СССР, 1969).
На основании морфологических и гидрологических особенностей реки и ее бассейна А. М. Норбатов (1944) делят Прут на три участка: верхний (горный и предгорный) — от истоков до г. Черновцы, протяженностью 185 км (скорость течения воды до 3 км/с), средний — от г. Черновцы до с. Скуляны, 320 км (скорость течения до 0,7 м/с) и нижний — от с. Скуляны до устья, 445 км (скорость течения 0,3м/с). Донные отложения в среднем и нижем течении в основном представлены илистыми грунтами с примесью песка, гальки и глины, в верхнем — галькой и каменными плитами.
Для водосброса Прута характерно наличие большого количества малых притоков. Из 542 водотоков, впадающих в Прут, 46 приходяся на Молдавию: Вилий (50 км), Лопатник (57 км), Раковец (57 км), Чугур (90 км), Каменка (93 км), Лапушна, Сарата и др. Почти все притоки Прута в пределах республики зарегулированы и являются цепочками прудов, используемых для орошения и рыбохозяйственных целей.
Количество взвешенных веществ в р. Прут во время паводков, достигает 12 кг/м3. Поэтому не случайно прозрачность воды нередко понижается практически до нуля (Гримальский, 1970).
В озера Дуная и Причерноморья впадают реки Кагул, Ялпух, Когильник, Сарата и другие, характеризующиеся маловодностью. Режим рек полностью зависит от количества осадков.
Крупных озер в Молдавии нет. Их заменяют несколько пойменных водоемов Днестра и Прута, общая площадь которых при среднемеженном уровне составляет 1835 га, а емкость — 19,1 млн.м3. Озера Белеу (800 га), Драчеле (120 га), Ротунда (200 га) находятся в нижней левобережной пойме реки Прут, а Красное, Кривое, Ротунда, Белое и другие — в пойме Днестра (Пояг, 1974). Средняя их глубина около 1 м. Озера заболочены, значительная часть поверхности покрыта водной растительностью.
Гораздо больший объем запасов воды зарегулирован в искусcтвенных водоемах — водохранилищах и прудах. Наиболее крупное водохранилище — Дубоссарское. Оно занимает отрезок Днестра от пгт. Каменка до г. Дубоссары. При НПГ водохранилище имеет длину 128 км, площадь 6750 га, среднюю глубину 7,5 м. Наиболее глубоководная часть приходится на приплотинный участок. Ширина водохранилища колеблется от 300 м в верхней его части до 1,3 км в районе плотины. Объем его в связи с интенсивными процессами заиления уменьшился за 20 лет существования с 485,5 до 335 млн.м3 (Горбатенький, Гуранда, 1977). По своим, типологическим особенностям водохранилище относится к типично-русловым водоемам степной климатической зоны с многократным (до 35 раз) среднегодовым водообменом (Ярошенко, Набережный, 1955; 1959; Ярошенко, 1957; 1962).
В гидрографическом отношении водохранилище естественно делится на три участка. За верхний принимается участок от rpaницы подпора до г. Рыбница, средний — от г. Рыбница до с. Цыбулевка нижний — от с. Цыбулевка до плотины ГЭС (Ярошенко, 1956, 1957). Проточноcть водохранилища определяется главным образом состоянием уровенного режима воды в Днестре. Максимальные скорости течения в водохранилище колеблются от 1,8 до 0,18 м/с (верхний и приплотинный участки соответственно). Такой режим проточности способствует постоянному вертикальному перемешиванию водных масс, что положительно сказывается на температурном и гидрохимическом режимах всей толщи воды, устраняя более или менее длительную стратификацию.
Высшая водная растительность встречается в виде отдельных полос тростника и рогоза вдоль берега. Местами имеются небольшие куртины рдестов, роголистника, урути и др. Лишь в заводи Ягорлык водная растительность образует более густые заросли тростника, рогоза и других водных растений.
Отличительной чертой Дубоссарского водохранилища является отсутствие крупных заливов. Единственный залив, образованный в долине р. Ягорлык, площадью около 300 га не меняет общей конфигурации водохранилища.
В республике более 10 малых водохранилищ с проектной водной площадью от 100 до 900 га. Все они используются для удовлетворения различных хозяйственно-бытовых нужд колхозов и совхозов, а также ведения интенсивного рыбного хозяйства.
Самое южное непроточное водохранилище — Конгазское. Его плотина пересекает р. Ялпух примерно в 70 км от истока. Площадь его 586 га при длине 8,3 км, средняя ширина 0,7 км; максимальная глубина 5,3 м при средней не более 2 м; емкость 11,4 млн.м3. Мелководья до глубины 3 м занимают большую часть площади водохранилище. Главным источником водного питания является р. Ялпух. Прозрачность воды колеблется от 30 до 75 см, зимой достигая 2,5 м.
Водная растительность развита незначительно, и то на мелководье. Она представлена куртинами клубнекамыша, рдеста, ситника и тростника.
Непроточное, Комратское водохранилище, вытянутое на 3,5км с многолетним регулированием, расположено также на р. Ялпух, примерно в 30 км выше Конгазского. Площадь 170 га; объем воды 4 млн.м3; средняя ширина 0,4 км; максимальная глубина 3,5 м. Донные отложения, также как и в Конгазском водохранилище, представлены илами, в прибрежных участках они глинистые. Проточность обоих водохранилищ возможна только при обильном снеготаянии или сильных ливнях.
Небольшие заросли и отдельные куртины водной растительности в верховье водохранилища состоят преимущественно из тростника, рогоза, нередко камыша. Куртины же мягкой подводной растительности, в частности рдеста, лютика и водной гречихи, — мелкие и крайне редкие. Водохранилище расположено непосредственно у г. Комрат и помимо рыбоводства используется для летнего отдыха.
На реке Ботна, правом притоке Днестра, сооружены три малых водохранилища: Ульменское (у с. Ульма Котовского района), сaмое верхнее, площадь 72 гa и объем воды 2,14 млн.м³; Костештское (у с. Костешты Котовского района) в 20 км ниже предыдущего, плoщадь 182 га и объем воды 3,35 млн.м3 и Резенское (у с. Резены. Koтовского района) на 20 км ниже предыдущего, площадь 194 га, емкость 3,4 млн.м3. Водохранилища непроточные (Гримальский, 1970). Бывшее Лазовское водохранилище на р. Реут во всех отношениях отличалось от предыдущих. Площадь его составляла всего 70-75 га, однако водообмен происходил в среднем 100 раз в год или каждые три-четыре дня, что характеризовало водохранилище как типично-русловое. Средняя скорость течения воды в зависимости от водности р. Реут достигала 30-50 см/с, прозрачность — 30-120 см. Продольная ось превышала 7 км, а средняя его ширина едва доходила до 100 м, при максимуме 150 м. Средняя глубина 2,5, максимальная 4 м. Общая емкость водохранилища 1,7-1,8 млн.м³. Водная растительность сосредоточивалась главным образом в верхней, наиболее суженной и мелководной части водохранилища. Чаще других здесь встречались рдесты и роголистник. Последний образовывал местами настоящие заросли. Значительно реже отмечены стрелолист, частуха подорожниковая, сусак зонтичный и др. Сплошным ковром покрывала значительные пространства дна кладофора.
Марамоновское водохранилище относится к полупроточным. Оно сооружено на р. Куболта, притоке Реута, у с. Марамоновка Дрокиевского района. Площадь около 100 га, максимальная глубина 6, средняя — 1,5-2,0 м.
Кучурганский лиман — один из наиболее крупных левобережных пойменных водоемов низовья Днестра. Он образовался в устье пересыхающей речки Кучурган. По данным Ю. М. Марковского (1953)и М. Ф. Ярошенко (1950, 1957, 1973) лиман представляет собой отчленившийся в прошлом участок Приднестровского лимана, до последнего времени сохранивший ряд компонентов реликтовой лиманной фауны, специфичной для эстуариев низовьев рек Понто-Каспийского бассейна.
С 1964 г. лиман используется в качестве водоема-охладителя Молдавской ГРЭС. Для поддержания необходимого уровня воды лиман в нижней части перегорожен водорегулирующей плотиной. После зарегулирования его площадь составляет 2900 га, средняя глубина 3 м, емкость воды около 88-92 млн.м3. Длина лимана 15, наибольшая ширина 3 км. Верховье, приплотинный и отдельные прибрежные участки зарастают в основном тростником и рогозом. На открытых участках встречается рдест, валиснерия, роголистник. Общие запасы высшей водной растительности оцениваются в 60 тыс.т (Шаларь, 1971).
В Молдавии насчитывается примерно 1500 прудов, их общая площадь 16,0 тыс.га. Объем воды при нормальном подпорном горизонте достигает 233 млн.м3. Около 99% прудов расположены в балках, поймах небольших речек и ручейков. Источниками водоснабжения 7,5% прудов являются небольшие речки, 52,9% — ручейки, 26,8% — родники и 12,8% — исключительно атмосферные осадки (Пояг, 1974). Площадь прудов варьирует от 3-4 до 200 га, а средняя глубина от 0,8 до 3,0 м. Большинство прудов расположены за пределами населенных пунктов. Их водосборная площадь включает приусадебные участки, огорода, животноводческие комплексы, откуда вместе с паводковыми водами в пруды поступает большое количество органических веществ. Дополнительное значительное количество органики и пестицидов смывается в пруды с сельскохозяйственных угодий. Не случайно для воды прудов характерно постоянное наличие биогенных элементов и высокие величины бихроматной окисляемости, способствующие обильному развитию фитопланктона, особенно синезеленных, протококковых и других групп водорослей.
Озеро Кагул, расположенное вблизи г. Рени, относитоя к группе пресноводных придунайских лиманов. Оно состоит из двух морфологически различных частей: узкой и длинной (до 17 км) вершины широкого эллиптической формы низовья длиной до 13 и шириной до 11 км. С южной стороны озеро соединено о Дунаем коротким гирлом Векета, а также с оз. Картал. Площадь лимана колеблется от 103 до 105,5 км2. Максимальная глубина в меженный период — 2, при средней 1 м (Lepşi, 1932; Владимирова и Зеров, 1961).
В прибрежной зоне распространены тростниково-рогозовые заросли, в открытом плесе — рдест гребенчатый. Общая площадь зарослей макрофагов 800 га, из них 554 покрыты тростником и узколистным рогозом (Борщ, 1979). По подсчетам 3. Т. Борща (1979), суммарная биомасса всей водной растительности лимана в расчете на 1 га составляет 73 т.
Прозрачность воды в связи с мелководностью лимана, постоянным и интенсивным ветровым перемешиванием почти всей толщи воды в редких случаях превышает 1 м.
К числу абиотических факторов, оказывающих существенное влияние на формирование среды обитания коловраток и многие стороны функциональной деятельности, следует отнести температуру и минерализацию воды, содержание в ней растворенного кислорода и величину концентрации водородных ионов (рН).
В целом температурный режим воды в водоемах Молдавии благоприятствует протеканию всех жизненных функций коловраток. Haпример, в прудах и малых водохранилищах среднесуточная температура воды уже к 15 апреля, в зависимости от характера весны, поднимается до 8-15°С и сохраняется на этом уровне до 15 октября (Ярошенко, 1956, 1958; Гримальский, 1962; Горбатенький, Бызгу, 1964). В отдельные жаркие летние дни она превышает 29°С. Сумма температур в градусах-днях за период с 1 мая пo 1 октября колеблется от 3045 до 3265.
В Дубоссарском водохранилище среднегодовая температура верхнего слоя достигает 10,5° С (Дубоссарское водохранилище, 1964). Температура ниже 1°С отмечена в декабре, январе и феврале, но в отдельные годы она повышается до 2,5-3,0°С. Максимальные показатели в июле составляют 25,5-26,5°С, а в отдельные дни — 28,0-29,0°С. Вместе с тем бывают годы, когда июльская среднемесячная температура воды равна примерно 22,0, а среднепятидневная — 21,0°С.
В Кучурганском лимане-охладителе Молдавской ГРЭС влияние сброса подогретых вод ГРЭС на горизонтальное распределение температуры воды начало проявляться с пуском первых энергоблоков в 1964 г. К 1970 г. при мощности ГРЭС 1200 тыс.кВт тепловое воздействие распространилось на весь лиман, а в нижнем циркуляционном участке среднегодовая температура воды доходила до 18°С (Ярошенко, Горбатенький, 1973). В 1982 г. в период с апреля по октябрь средняя температура воды повышалась до 23,2°С, в леткие месяцы достигала 33,5°С.
Температурный режим днестровской воды в пределах Молдавии крайне неустойчив. Максимальная температура (25,0-26,0°С) зарегистрирована в июле-августе, но в некоторые годы она понижается до 18,0-19,0°С, что объясняется поздним таянием снега в Карпатах и влиянием подземного стока (Ярошенко, 1957). Обычно температура воды около 15,0°С отмечается в последней декаде апреля и сохраняется на этом уровне до конца первой декады октября. Среднемноголетняя температура воды Днестра на отдельных станциях колеблется от 10,7 до 12,9°C.
В озере Кагул среднедекадная температура воды с 15 мая по 15 сентября 1973-1974 гг. была выше 20°С. Общая сумма градусо-дней в период апрель-октябрь составляла в среднем 4000. В отдельные дни летняя температура воды достигала 28,7-29,4°С. В связи с постоянным ветровым перемешиванием всей ее толщи, различия в вертикальном распределении температуры воды в озере не превышали 0,2°С.
Солевой состав. Вода в реке Днестр относится к гидрокарбонатному классу группы кальция второго типа (по классификации Алекина, 1946) с минерализацией от 300 до 780 мг-экз./л (Ярошенко, 1957; 1964; Бызгу, Ярошенко и др., 1964; Бызгу, 1977). В Дубоссарском водохранилище солевой состав воды вследствие значительного водообмена днестровской водой мало чем отличается от последней и колеблется в пределах 332 — 595 мг/л. В придонных слоях сумма ионов в зимний период достигает 685 мг/л (Бызгу, 1977). Состав воды реки Прут почти аналогичен днестровской, а ее минерализация варьирует от 290 до 600 мг/л (Бызгу, 1964). Минимальные величины минерализации такие же как и в Днестре. Они приходятся на время весеннего половодья, летних ливневых дождей и таяния снега в Карпатах. Максимальные величины минерализации вода Днестра и Прута наблюдаются в январе-феврале.
В Кучурганском лимане-охладителе Молдавской ГРЭС минерализация воды находится в диапазоне 575-1200 мг/л и по ионному составу относится к гидрокарбонатному-сульфатно-хлоридному классу.
В озере Кагул вода менее минерализованная (385-476 мг/л) и принадлежит к гидрокарбонатному классу группы кальция, периодически натрия-кальция-магния, второй тип (Ярошенко, Бызгу, Кожухарь, 1973; Бызгу, Зубкова, 1979).
Конгазское, Комратское, Гидигичское, Казанештское и Лазовское малые водохранилища являются водоемами с повышенно-минерализованными водами. Сумма ионов колеблется от 700 до 2228 мг/л. По ионно-солевому составу вода этих водохранилищ принадлежит к сульфатно-хлоридно-натриевому (Конгазское), сульфатно-натриевому (Комратское), гидрокарбонатно-магниево-натриевому (Гидигичское) и сульфатно-гидрокарбонатно-натриевому (Лазовское, Казанештское) типам. Минерализация воды Кишкаренского водохранилища значительно выше (2000-4000 мг/л); по ионно-солевому составу это сульфатный класс группы натрия второго типа (Бызгу, 1964).
Заметно ниже минерализация воды в водохранилищах на малых реках бассейна р. Ботна (284,0-760,8 мг/л), истоки которой расположены в кодровой зоне Молдавии. Здесь вода гидрокарбонатного класса группы магния.
Вода притока Днестра Реута на участке от истоков до г. Бельцы относится к гидрокарбонатному классу с минерализацией, редко превышающей 1000 мг/л. Ниже г. Бельцы до впадения в Днестр вода Прута переходит в сульфатно-гидрокарбонатный класс группы натрия с минерализацией от 1000 до 2000 мг/л. Сумма ионов воды притока Днестра Ботна варьирует в течение года и по годам от 1000 до 5000 мг/л.
Малые реки Кагул, Ялпух, Когильник, Тараклия — маловодны и временами пересыхают. Химический состав воды их меняется на всем протяжении. Преобладает хлоридно-сульфатно-натриевый класс с минерализацией до 5000 мг/л. Минерализация более мелких рек в отдельных случаях достигает 10000 мг/л.
Минерализация основной массы прудов Молдавии колеблется от 400 до 7000 мг/л, причем в 70% прудов сумма ионов превышает 1000 мг/л. Прудов с минерализацией воды ниже 200 мг/л в Молдавии нет, и, как отмечает М. Ф. Ярошенко (1956), условия для их o6pазования отсутствуют.
Кислородный режим воды в водоемах республики в целом благоприятен и соответствует жизненным потребностям коловраток. Резкое снижение содержания кислорода в поверхностных и придонных слоях воды до угрожающего минимума наблюдается редко и непродолжительно. Чаще, особенно в прудах, малых водохранилищах и других водоемах, при чрезмерном развитии фитоплантона отмечается перенасыщение воды кислородом.
Что касается активной реакции воды (рН), то в большинстве водоемов и водотоков ее величина находится в диапазоне от 7,5 до 8,2. В озере Кагул и Кучурганском лимане показатель концентрации водородных ионов несколько выше — 8,3-8,5, а в отдельных прудах периодически доходит до 9,2-9,6 (Гримальский, Фридман, 1955; Ярошенко, 1966; Бызгу, 1963; Кожухарь, 1970).
Среди биотических факторов среды обитания коловраток большое значение имеет качество и количество пищи. Учитывая это, мы остановимся на характеристике бактериофлоры, фитопланктона и протозойной фауны водоемов и водотоков Молдавии. Несомненно, что состав кормовых компонентов коловраток этими объектами не исчерпывается, но они играют первостепенную роль (Эрман, 1956, 1962, 1963; Галковская, 1963, 1965; Кутикова, 1970).
Бактериальная флора в водоемах республики очень обильна (Кривенцова, 1959, 1963, 1964, 1971, 1973, 1977). В малых водохранилищах, например, среднее число бактерий варьирует от 8 в Конгазском до 26,9 млн.кл./мл в Кишкаренском водохранилищах, а биомасса соответственно от 6,7 до 21,7 мг/л. В период летних максимумов численность бактерий в Гидигичском и Кишкареноком водохранилищах достигает 76,9 и 113,2 млн.кл./л, а биомасса их соответственно 61,5-92,6 мг/л. Неравномерное распределение бактериофлоры в малых водохранилищах зависит не только от содержания органических и биогенных веществ, но и от температуры, иногда и погодных условий.
Степень обсеменяемости малых водохранилищ сапрофитными бактериями очень велика (до несколько тысяч и даже десятков тысяч клеток в 1 мл воды). Это указывает на обилие в них органического вещества аллохтонного и автохтонного происхождения.
Общее число бактерий в Дубоссарском водохранилище составляет в поверхностном слое воды 0,5-12,9 (на отдельных участках 19,0 млн.кл./мл), в придонном слое — 0,6 — 21,9 и в сыром rpyнтe — 12.2-93.4 млрд.кл./г.
Что касается биомассы бактерий в водохранилище, то она колеблется в верхнем слое воды в пределах 0,29-14,6, в придонных — 0,23-10,9 мг/л, а в верхнем слое донных отложений от 3,25 до 105,6 г/кг сырого грунта. Наибольшие величины биомассы примерно в 48% случаев характерны для прибрежных участков.
Численность бактерий в р. Днестр на участке выше водохранилища (пгт. Каменка) варьирует на протяжении года от 3,7 млн.кл./мл в апреле до 16,2 млн.кл./мл в августе. Примерно такое же количество их содержится в Волге близ Куйбышева, но это гораздо больше, чем в таких реках, как Москва, Кубань, Урал и др. (Родина, 1959).
В нижнем участке Днестра в связи с его интенсивными загрязнением общая бактериальная численность достигает 27,6 млн.кл./мл, а число сапрофитов — 4960 кл/мл.
В придунайском лимане Кагул величины численности бактериофлоры составляют от 4,9-5,3 весной до 9,3-15,0 млн.бакт./мл летом.
Кучурганский лиман в отношении развития бактериофлоры (Кривенцова, 1973) также, как и многие другие водоемы-охладители (Мордухай-Болтовской, 1971, 1975), своеобразен. Значительный, но неодинаковый прогрев водных масс по акватории лимана влечет за собой ряд существенных изменений, отражаясь в первую очередь на продуктивности и распределении численности бактерий. Этот показатель находится в пределах 0,5 — 10,2 млн.кл./мл воды и 8,1-90,0 млрд.бакт./г сырого грунта.
В мелководной речке Кучурган, питающей лиман, средняя численность бактерий составляет 6,4, а в притоке Днестра Турунчук — 4,1 млн.кл./мл.
Заметно ниже показатели численности бактерий в р. Прут: 280,0 тыс.кл./мл. а верхнем течении и 1,8 млн. кл./мл в нижнем (Гримальский, 1970). Зато в прудах общее количество бактерий достаточно высокое — 14,5-75,8 млн.кл./мл, а в прудах, удобряемых органическими и минеральными веществами, — 127,8 млн.кл./мл (Гримальский, Кожокару и др., 1970; Кожокару, Мущинский и др., 1973; Кожокару, Козлова и др., 1976).
По показателям численного развития и продуцирования бактерий водоемы республики отнесены Т. Д. Кривенцовой к эвтрофному типу, что подтверждается данными и по другим группам водных организмов.
Существование большинства популяций коловраток прямо или косвенно связано также с наличием в водоемах фитопланктона.
Как показали исследования, фитопланктон водоемов республики качественно и количественно обилен (Шаларь, 1962, 1964, 1971; Шаларь, Обух, 1963; Набережный, 1965; Шаларь, Яловицкая, 1966; Кожокару, 1968; Данилов, 1970; Козлова, 1970, 1976; Кожокару, Яловицкая, 1974). Этому способствуют благоприятный термический режим и постоянное наличие в воде в достаточном количестве биогенных элементов.
В целом, среди выявленного состава фитопланктона (1005 видов и разновидностей) преобладают зеленые (336 таксонов), диатомовые (348), эвгленовые (150) и синезеленые (125 таксонов) водорослей.
Bмecтe с тем, следует отметить, что видовое соотношение отдельных групп фитопланктона даже в близких по типологии водоемах существенно различается и зависит от комплекса абиотических и биотических факторов, включая хозяйственное использование водоема, его санитарно — гидрохимическое состояние. Среди наиболее распространенных и массовых видов фитопланктона в водоемах республики следует выделить Scenedеsmus quadricauda, S. acuminatus, Ankistrodesmus аngustus, Coelastrum microporum, Crucigenia tetrapedia и др. — из протококковых, Stephanodisсus hаntzсhii, Nitsechia sp., Melosira granulata и др. — из диатомовых, Trachelomonas sр., Тг. intermedia, Strombomonas fluviatilis, Euglena texta, Phacus longicаuda и др. — из эвгленовых, Microcystis aeruginosa, Аphanizomenon flos-aquae, Anabaena spiroides и др. — из синезеленых, Phacotus coccifer, Chlamydomonas sр., Pandorina morum — вольвоксовых и ряд других.
В количественном отношении фитопланктон большинства водоемов республики также достаточно обилен. Ведущее положение в прудах и водохранилищах занимают синезеленые водоросли, на долю которых приходится до 75,1% в Дубоссарском водохранилище, 98,6% — в Кишкаренском и 91,9% от общей численности фитопланктона в некоторых прудах. По степени развития синезеленых водорослей в прудах Шаларь (1973) подразделяет их на «цветущие» (свыше 100 млн.кл./мл); с умеренным развитием (десятки миллионов кл./л) и с ограниченным развитием (менее 10 млн. кл./л). В Днестре и Реуте относительная численность этих водорослей несравненно ниже и составляет соответственно до 12,2% и 4% от суммарной численности фитопланктона, что объясняется специфическими условиями гидрологического режима этих водоемов.
Второе и третье места по количественному развитию разделяют протококковые и диатомовые водоросли. Первые численно преобладают в р. Днестр (1223,2 тыс.кл./л и 0,523 г/м3), Гидигичском (6808,2 тыс.кл./л и 2780 г/м3) и Кишкаренском (3108,0 тыс.кл./л и 1714 г/м3) водохранилищах, а также в некоторых прудах. Максимальная численность диатомовых обнаружена в пруду с. Хидороуцы (24,4 млн. кл./л), что обусловлено массовым развитием Stephanodiscus hantzschii, периодически достигающей более 121,0 млн.кл./л с биомассой 244 г/м3.
Рассматривая биотические условия водоемов республики, мы сочли необходимым коснуться также свободноживущих инфузорий как одного из очень важных звеньев в питании хищных и факультативнохищных видов коловраток. Напомним, что Л. А. Эрман (1963), рассматривая адаптивные возможности коловраток к использованию в пищу широкого круга представителей фитопланктона, выделил среди них комплекс потребителей животной пищи, насчитывающий 111 видов.
В систематическом составе свободноживущих инфузорий водоемов Молдавии выявлено более 715 видов. Наиболее разнообразны равноресничные инфузории (429 видов), особенно семейство Holophryidae. Спиральноресничные насчитывают 115, а кругоресничные — 170 видов. Из общего видового разнообразия инфузорий 195 видов (исключая Suctoria) обнаружены в Дубоссарском водохранилище, 217 — в Кучурганском лимане-охладителе Молдавской ГРЭС, 149 — в р. Бык, 117 — в Комсомольском озере, 113 — в Гидигичском водохранилище, 102 — в прудах и т.д. (Чорик, 1968, 1973, 1977, Чорик, Викол, 1979; 1981).
Достаточно высоки величины численности и биомассы инфузорий во всех типах водоемов республики. В Дубссарском водохранилище,например, среднегодовая их численность составляет 207,7 тыс.экз./м3 в планктоне и 620,6 тыс.экз/м2 в бентосе, с биомассой соответственно 670 и 360 мг. Наиболее высокая численность — 107 млн.экз./м2 — обнаружена в заводи Рыбница, что определялась бурным развитием кругоресничных инфузорий.
В Гидигичском водохранилище на основании зимних наблюдений установлено, что средняя численность инфузорий равна 1474 при максимуме 4245 тыс.экз./м2. Высокими оказались численнооть (2446 тыс. экз./м2) и биомасса (1,86 г) в выростных прудах рыбхона Гура-Быкулуй при ведущей роли равноресничных. Только в Кучурганском лимане показатели численного развития свободноживущкх инфузорий несколько ниже — в среднем 861,8 тыс.экз./м2, биомасса 560 мг. В общей численности инфузорий решающую роль играли Halоtricha и Spirotriсha.
Все вышеизложенное позволяет заключить, что в водоемах Молдавии постоянно имеются благоприятные трофические условия, в полной мере способствующие удовлетворению пищевых потребностей коловраток.

© 1984. Авторские права на статью принадлежат А.И.Набережному, монография «Коловратки водоемов Молдавии» (Ин-т зоологии и физиологии АН МССР)
Использование и копирование статьи разрешается с указанием автора и ссылкой на первоисточник HERALD HYDROBIOLOGY

Реклама

Январь 6, 2010 Posted by | Rotatoria | , , , , , , , , , , , , , , , , | Оставьте комментарий

Рыба Кучурганского лимана

Размерно-возрастной состав, питание, темп роста и упитанноcть рыб
Изменение некоторых физико-химических факторов лимана-охладителя и трофических условий для рыб отразилось на характере питания, темпе роста и упитанности промысловых рыб. В частности, трофические условия для хищных рыб улучшились в связи с более обильным развитием малоценных и сорных рыб в первые годы после зарегулирования стока лимана (Владимиров, Кубрак и др., 1971). Годовая продукция макрофитов, по данным М. Ф. Ярошенко, В. Н. Шаларя и др. (1970), возросла до 90-100 тыс.т, а среднегодовая биомасса фитопланктона составила 2,1 г/м³, что в 2 раза выше биомассы зоопланктона. Следовательно, улучшилась обеспеченность кормом типичных рыб-фитофагов (белого амура, белого толстолобика, красноперки) и отчасти для плотвы, тарани и густеры.
Средняя плотность донных гидробионтов по сравнению с периодом до зарегулирования лимана осталась почти прежней, составив в 1970 г., по данным М. Ф. Ярошенко, 3000 экз./м². Однако качественный состав донной фауны изменился в связи с преобладанием моллюсков (преимущественно дрейссены), которые в меньшей степени испольэуются в пищу основными промысловыми рыбами по сравнению с олигохетами, личинками хирономид, высшими ракообразными. Биомасса этих групп донной фауны не превышает 5-7 г/м², что недостаточно при высокой плотности рыб-бентофагов, характерных для лимана-охладителя.
В целом рыбы лимана неплохо обеспечены естественными растительными и животными кормами. На общем фоне изменившихся трофических условий лимана-охладителя мы и рассматриваем характер питания и темп роста наиболее массовых хищных и мирных рыб.

Щука — Esox lucius L. В лимане-охладителе, кроме оеголеток стадо щуки представлено 8 возрастными категориями (двухлетки-девятилетки). За последние годы произошло значительное омоложение стада за счет поколений периода существования лимана-охладителя. В частности, на поколение рыб 1967 г. приходилось в 1968 г. 61,6%, в 1969 г. — 20 и в 1970 г. — 42,8% численности стада. Высокоурожайным было и поколение щуки 1968 г., составившее в 1970 г. 34,3%.
Размеры щуки в возрасте от года и стapшe колеблются oт 20 до 68 см, а вес — от 125 до 3900 г. Единично в уловах попадают более старые особи весом до 6-7 кг. Показатели размерного состава щуки свидетельствуют о том, что основу вылавливаемых рыб составляют половозрелые особи размером 24-46 см.
У щуки, несмотря на сдвиг времени нереста на более ранние сроки, заметного ускорения темпа роста сеголеток не произошло. В середине лета (июль) размеры их колеблются от 7,5 до 20 см (средняя длина -11,2 см), а вес — от 3,8 до 74 г. (средний вес — 16 г). Такие значительные колебания длины и веса тела сеголетней молоди объясняются большой растянутостью периода икрометания (февраль — апрель). Они же прослеживаются и в осенний период (октябрь), когда длина тела достигает 11,0-24,5 см (средняя — 14,6 см), а вес-9,0 — 90,0 г. (средний — 43 г).
К концу второго года жизни (табл.30) щука имеет среднюю длину 23,3 см и 125 г. веса, третьего года — 32,0 см и 294 г. четвертого — 36,7 см и.467 г., пятого — 42,3 см и 690 г и т.д., достигая в возрасте 8+ средней длины 66,5 см и 3925 г. веса.
Сравнение наших данных для первых 4 воэрастных групп (0+ — 3+) с данными Ф. Ф. Егермана (1926) о росте щуки в лимане в 1923-1925 гг. и сведениям — И. Ф. Кубрака (1970) и В. Н. Долгого (I970) за 1964-1965 гг. показало, что рост ее несколько замедлился, несмотря на сравнительно благоприятные условия ее откорма — увеличение численности плотвы, уклеи, горчака, окуня, бычков, являющихся в лимане основными объектами ее питания. Очевидно, главные npичины наблюдаемого замедления темпа роста щуки — интенсивное ее заражение ленточными червями и триэнофорусом (Есиненко-Мариц, 1965) и отчасти несовпадение биотопа щуки и некоторых рыб, которыми она питается.
Вмесе с тем по сравнению с другими водоемами Молдавии (Дубоссарское водохранилище, р. Прут) щука из лимана отличается более быстрым ростом (табл. 30). Однако по показателям линейного и весового роста она уступает, в частности, щуке из низовья Южного Буга (Щербуха, 1965) и Камского водохранилища (Зиновьев, Ткаченко, 1965).
В лимане, как и в других водоемах, щука характеризуется невысокой упитанностью. Средний коэффициент ее упитанности по Фультону в летне-осенний период составляет 0,9-1,0.

Таблица 30

Линейный и весовой рост щуки в Кучурганском лимане-охладителе в некоторых водоемах Юга СССР

Воз-
раст
лиман
охлади
тель
1966-
1970
лиман до заре-
гулирования
Дубос-
сарс-
кое
водохр.
Томна-
тик,
Влади-
миров,
Карлов
1964
река
Прут
Попа
1967
Камс-
кое
водохр.
Зино-
вьев
Ткаче-
нко,
1965
Низо-
вье
Южн.
Буга
Щер-
буха
1965
Егер-
ман,
1926
Куб-
рак,
1970
Дол-
гий,
1970
0+

14,6

43

19,2

68,3

14

17

1+

23,3

125

23

199

26,3

175

25

122

25

141,2

24,2

2+

32

294

31

251

31,8

327

36

350

29,6

255

33,1

285

33,5

3+

36,7

467

41,6

780

38,3

556

46

725

36,7

448

31,4

346

43,3

657

39,1

4+

42,3

690

33,1

420

47,2

880

5+

51,3

1315

40,2

568

55

1352

6+

57

1711

61,6

1990

7+

57

1711

68

3000

8+

66,5

3925

Примечание: для всех возрастов в числителе приведена средн. длина рыб без С в см, в знаменателе — средн. вес тела в г

Судак — Jucioperca lucioperca (L.). Численность его в лимане заметно увеличилась лишь в 1969-1970 гг. как за счет местных поколений 1967-1969 гг., так и проникших сюда из Турунчука. Уловы судака, кроме сеголеток, состояли из двух-пятилеток, причем доминирующими были младшие возрасты — 1-1+ и 2-2+, составлявшие вместе в 1969 г. 77,8%, а в 1970 г. — 82,4% всего стада. В контрольных уловах судак, особенно в 1970 г., представлен в основном неполовозрелыми формами генераций 1968-1969 гг., что свидетельствует о необходимости строгого регулирования его промысла. Судаки в возрасте старше 5 лет в лимане пока встречаются единично. В течение 1969-1970 гг. вылавливались судаки с длиной тела от 20 до 60 см и весом от 110 до 2200 г. Чаще всего были представлены особи длиной 20-22 (14,2%) и 34-38 см (11,3%). Численное соотношение особей с длиной тела от 42 до 60 см было лишь в пределах 1,4 — 2,8%.
Судак характеризуется интенсивным ростом уже на первом году жизни, потребляя в массе уклею, верховку, горчака, бычков. Если в июле сеголетки имеют среднюю длину 8,8 см и вес 6,5 г., то уже к концу октября эти показатели возрастают соответственно до 16,5 см и 60 г. Некоторая растянутость периода икрометания, также, как и у щуки, является причиной значительных колебаний размеров (10-21,5 см) и веса (14,4-123 г) сеголетней молоди.
В последующие годы жизни судак также растет сравнительно хорошо. По среднемноголетним данным, двухлетки имеют длину 23,1 см и вес 167 г. трехлетки — 31 см и 458 г. четырехлетки — 37 см и 625 г, пятилетки — 40,5 см и 956 г, шестилетки — 47,1 см 1484 г и семилетки — 56,2 см и 2120 г. Эти показатели (табл.31) значительно выше тех, которые были характерны для судака двух-пятилетнего возраста в период до зарегулирования стока лимана.
По показателям линейного и весового роста оудак Кучурганского лимана почти не уступает судаку Дубоссарского водохранилища и Днестровского лимана. По сравнению с судаком Цимлянского водохранилища он растет лучше, особенно в течение первых лет жизни, уступая лишь южно-бугскому судаку, линейные показатели его З-6-годовалых особей больше (табл. 31).
Коэффициент упитанности судака в лимане выше, чем щуку и в летне-осенний период в среднем колеблется от 1,2 до 1,3.

Таблица 31

Линейный и весовой рост судака в Кучурганском лимане-охладителе и некоторых водоемах Юга СССР

Воз-
раст

лиман-
охлади-
тель
(1966-1970)

 

лиман до
зарегули-
рования,

(1964-
1965)
Дубос-
сарское
водохр.
Томнатик
1964,
Карлов
1960
Днест-
ровский
лиман
Замбри-
борщ,
1953
Цимлян-
ское
водохр.
Дрягин и
др., 1954
Низовье
Южного
Буга
Щербуха
1965

0+

16,5

60

 

15,9

51,4

 

1+

23,1

167

21,9

133

23,1

153,4

23,6

172,3

14

19,3

2+

31

458

28,2

286

31,1

371,6

31,1

495,5

25,9

31,6

3+

37

627

34

556

37,4

676

37,2

691,5

35,4

39,2

4+

40,5

956

39

827

42,7

1002,5

41

998,7

42,3

43,6

5+

47,1

1484

47,8

1406

47,3

1607

47,1

49,4

6+

56,2

2120

 

57,6

Окунь — Perca fluviatilis (L.). Возрастной диапазон стада окуня в лимане в отличие от щуки и судака шире и охватывает кроме сеголеток, еще десять возрастных категорий (1-10 — годовалые). Если в 1967 г. стадо окуня на 84,8% было представлено поколениями периода до зарегулирования лимана, то уже в последующие три года их удельный вес в уловах значительно сократился: в 1968 г. — до 19,5%, в 1969г. — до 40,3% и в 1970 г. — до 27,2%.
Основу промысла окуня составляют особи в возрасте от 2 до 5 лет, то есть уже половозрелые формы. Очень редко были обнаружены окуни в возрасте 8-10 лет. Длина исследуемых окуней, не считая: сеголеток, колебалась от 6 до 38 см, а вес — от 16 до 1160 г. Преобладали рыбы размером 6-10 (23,4%) и 16-22 см (31,5%), в меньшем количестве вылавливались особи длиной тела 24-30 см (17,2%).
Спектр питания окуня включает 23 формы гидробионтов из числа ветвистоусых и веслоногих рачков, мизид, гаммарид, клопов, личинок хирономид и рыб. У молоди размером 4-8 см пища на 32,5% по весу состоит из зоопланктона и на 67,5% — из компонентов донной фауны. Окуни размером более 14 см поедают главным образом молодь малоценных и сорных рыб, при сохранении немалой роли и задонной фауны, составляющей иногда 46,4% общего веса содержимого кишечников.
На первом году жизни окунь достигает средней длины 6,0 см и 4,2 г. веса, на втором — 9,4 см и 16,4 г. на третьем — 14,2 см и 66 г., на четвертом — 18,2 см и 120 г. на пятом — 19,6 см и 206 г и т.д. Эти показатели ниже, чем у соответствующих возрастных групп окуня периода до зарегулирования лимана (табл. 32). На замедление темпа роста окуня в лимане-охладителе указывает и В. Н. Долгий (1970), отмечая, в частности, что пятилетки имеют среднюю длину 14 см и вес лишь 40 г., однако мы полагаем, что эти данные занижены.
В целом же, учитывая большую плотность рыб в лимане и некоторую ограниченность бентосных организмов олигохетно-хирономидного комплекса, являющихся объектами питания окуня не 1-2-м году жизни, темп роста его следует считать вполне удовлетворительным.
Его линейные показатели для всех возрастных групп выше, чем, например, у окуня из верховья Днестра (Опалатенко, 1967) и низовья Южного Буга (Щербуха, 1965).
Упитанность окуня в лимане-охладителе довольно высокая: поздней осенью она колеблется от 1,2 до 3,6, в среднем 1,8, что выше показателей упитанности щуки и судака.

Таблица 32

Линейный и весовой рост окуня в Кучурганском лимане-охладителе и некоторых водоемов Юга СССР

Воз-
раст

лиман-
охладитель
1966-1970

 

лиман до
зарегулирования
Верховье
Днестра
Опалатенко
1967
Низовье
Южного
Буга,
Щербуха
1965
наши
данные за
1964-1965
Егерман,
1926

0+

6

43

 

7,2

7,8

1+

9,4

16,4

10,3

27,5

10,7

45

 

2+

14,2

66

14,8

83,2

18,6

145,5

 

 

3+

18,2

120

20,6

177,7

24,3

277,3

16

16,8

4+

19,6

206

24,7

318

27,8

522

19

18,7

5+

26,3

351

27,4

418

31,9

754

22

25,4

6+

29

527

30,5

500

 

7+

31

810

 

30,2

8+

36

1160

Тарань — Rutilus rutilus heckeli (Nord.). Популяция тарани в лимане наряду о сеголетками представлена еще 6 возрастными категориями, включая 1-6-годовалые особи. До 1969 г.в стаде доминировали особи в возрасте 3-3+ (в 1967 г. — 32,6%, в 1968 г. — 11,5%) и 4-4+ (в 1967 г. — 37,7%, в 1968 г. — 65,6%). 5-летние особи составляли всего 7,7-11,5%. В 1969-70 гг. возрастной состав тарани изменился в связи с тем, что в уловах уже преобладали мощные генерации 1968-1969 гг. В частности, генерация 1968 г. составляла в 1968 г. 61,4% стада, а в 1970 г. — 41,4%.
Тарань в лимане имела размеры от 8 до 32 см (без сеголеток), а вес — от 18 до 685 г. В уловах преобладала тарань длиной тела 16 — 24 см, или 65,1% общего числа особей.
В отличие от тарани максимальная длина тела и вес плотвы в лимане составляет соответственно 22,0 см и 280 г. По данным Ф. Ф. Егермана (1926), среди карповых рыб лимана плотва была одной из наиболее тугорослых, достигая в возрасте 5+ средней длины 19,9 см и 93 г. веса. Более благоприятные условия для ее нагула в лимане-охладителе способствовали некоторому улучшении темпа роста. Так, например, трехлетки, четырехлетки и пятилетки, по Ф. Ф. Егерману (1926), имели средний вес тела соответственно 34,5, 54 и 93 г. а по нашим данным — 84,114 и 143 г. Несмотря на это, плотва по темпу роста в значительной степени уступает тарани, которая, оказавшись в лимане в более благоприятных трофических условиях по сравнению с низовьем Днестра, откуда она проникла, характеризуется высокими показателями линейного и весового роста. В частности, четырехлетки тарани имеют среднюю длину 19,6 см и вес 159 г, пятилетки — 24,5 см и 317 г. и шестилетки — 27,1 см и 459 г. (табл. 33).
По сравнению с 1964-1965 гг. наблюдается незначительное уменьшение средних линейных и весовых показателей тарани в первые годы жизни, что, очевидно, объясняется потреблением ею в
этот период главным образом растительных кормов, составляющих в кишечниках 100% по весу при 100%-ной частоте встречаемости (табл.33 ). В старшем возрасте тарань поедает в основном планктонные и бентосные формы, хотя большое значение имеют и растительые корма, преимущественно альгофлора.
Из анализа данных по росту тарани в Кучурганском лимане и некоторых водоемах Южной зоны СССР следует, что она растет лучше, чем в низовье Южного Буга (Щербуха, 1965), но уступает тарани Ленинского водохранилища (Булахов, 1966).
Коэффициент упитанности тарани Кучурганского лимана (по Фультону) также высокий и в летне-осенний период равен 1,3-3,2 (в среднем 2,0). Достаточно интенсивный рост и высокая упитанность, а также увеличение численности тарани в лимане-охладителе свидетельствуют о том, что условия для ее воспроизводства и нагула благоприятны, поэтому уже в настоящее время она заняла главное место в рыбном промысле.

Таблица 33

Линейный и весовой рост тарани в Кучурганском лимане-охладителе и некоторых водоемах Южной зоны СССР

Воз-
раст

лиман-
охлади-
тель
(1966-1970)

 

лиман до
зарегулирования,
(1964-1965)
Низовье
Южного Буга
Щербуха, 1965
Ленинское
водохранилище
Булахов, 1966

0+

6,6

6,2

 

 

 

1+

9,5

17,7

10,8

29,4

5,5*

3,8

1,3

2+

15,5

79

16,1

96

12,2*

 

3+

19,6

159

19,7

174

16,5

20,9*

214

4+

24,6

317

 

18,8

24,9

357

5+

27,1

459

21,2

29,1

574

Примечание: " * " Годовики, двухгодовики и т.д.

Лещ — Abramis bгаmа (L.). В состав стада леща, кроме сеголеток, входят еще двухлетки — восьмилетки. В 1967 г. отмечалось преобладание поколений до зарегулирования стока лимана (85,2%), а основу составляли рыбы старшего возраста — 4-4+ и 5-5+ соответственно 24,7 и 35,8%. Начиная с 1968 г., так же, как и у тарани, наиболее многочисленными в стаде становятся поколения периода существования лимана-охладителя. Так, в 1968 г. преобладало поколение 1967 (60,7%) и 1966 гг. (18,8%). Численность же поколений пернода до зарегулирования стока в стаде сократилась до 20,6% и примерно таким же оставалась в 1970 г.
В 1969-1970 гг. стадо леща соответственно на 44,5 и 71,9 % состояло из младших возрастных категорий (1-3-годовалые), в основном неполовозрелых рыб, что свидетельствует о наличии в лимане неблагоприятных условий для формирования промысловых запасов леща за счет естественного воспроизводства. Длина леща в контрольно-промысловых уловах варьирует от 8 до 14 см, а вес — от 37 до 1350 г.
Доминирующее положение в настоящее время еще сохраняется за маломерным лещом длиной тела 8,0-22,0 см (57,5%). На долю более крупных половозрелых особей размером более 28 см приходихся около 29,5% общего количестве рыб в стаде.
По характеру питания леща следует отнести к типичным эврифагам. Пищевой спектр его включает 12 коловраток, 20 ветвистоусых и веслоногих рачков, 29 представителей разных групп зарослевой и донной фауны, фитопланктона и высшей водной раотительности. У лещей размером 7-9 см частота встречаемости зоопланктона около 100%, у более крупных особей — до 17 см — 83,3-88,7%. Из компонентов донной фауны лещ поедает личинок хирономид, олигохет, геммарид, которые в кишечниках у особей размером 11,2 — 17,0 см составляют 75,2% по весу.
Популяция леща в лимане включает однократно и порционально нерестующих рыб. По этой причине в результате сильной растянутости периода икрометания уже на первом году жизни наблюдаются очень большие индивидуальные отклонения в линейных и весовых показателях молоди. Например, вес сеголеток в июле колеблется от 0,3 до 6,5 г, а осенью — от 1,2 до 13,0 г. В последующие годы значительные колебания длины и веса тела также сохраняются, причем они настолько велики, что вряд ли это можно объяснить только растянутостью периода нереста и индивидуальными отклонениями в росте особей. По-видимому, это связано и со смешанным характером популяции леща, состоящей из особей местных и попавших в лиман из Турунчукв, отличающихся по темпу роста.
Мы предполагаем, что в лимане в настоящее время существует две экологические формы леща — тугорослая и быстро растущая.
Тугорослая форма значительно отстает от быстро растущей: средняя длина двухлеток 7,2 см и вес 8,0 г. трехлеток — 11,0 см и 27,4 г, четырехлеток — 16,1 см и 70,7 г. пятилеток — 21,0 см и 194 г, шестилеток — 26,5 см и 397 г. Средние линейные и весовые показатели быстро растущего леща (табл.34) для соответствующих возрастных групп примерно в 1,5-2 раза выше.
По сравнению с годами, предшествующими зарегулированию стока лимана, темп poстa быстро растущего леща существенно не изменялся. Однако по сравнению с 1922-1925 гг. (Егерман, 1926) в настоящее время лещ в лимане растет медленнее.
По сравнению с лещом из Дубоссарского водохранилища в лимане он находитоя в менее благоприятных трофических условиях и растет хуже, имея и более ниэкий коэффициент упитанности (по Фультону). Среднее знэчение его для леща из Кучурганского лимана равно 1,6 против 2,3 в Дубоссарском водохранилище (Томнатик, 1964). Вместе с тем лещ Кучурганского лимана по темпу роста близок к лещу из низовья Южного Буга и опережает в росте леща из низовья Днепра, Горьковского и Цимлянского водохранилищ (табл.34).

Таблица 34

Линейный и весовой рост леща в Кучурганском лимане-охладителе и некоторых водоемов СССР

Воз-
раст

лиман
охлади
тель
1966-1970

 

лиман до
зарегули-
рования
Дубос-
сарс-
кое
водохр.
Томна-
тик,
1964
Низо-
вье Днепра
Щербу-
ха,
1965
Низо-
вье
Южн.
Буга
Щер-
буха
1965
Горько-
вское
водохр.
Лесни-
кова,
1968
Цимля-
нское
водохр.
Марке-
лова,
1958
наши
дан-
ные 1964-
1965
Егер-
ман,
1926

0+

 

 

5,4

4,4

 

 

 
1+

14,7

37,4

11,4

28,3

14,2

49

12,4

4,8

10,3

 

2+

18,1

122

18,9

148

19,8

163

19,6

10,4

16,9*

13,8

19,2

141

3+

23

256

23,3

255

25,7

336

24,6

17,5

22,7

18,1

22,2

222

4+

28,5

486

28,7

493

31,1

592

29,6

23,6

28,0

23,1

24,2

300

5+

31,3

620

34,8

784

33,7

29,2

33,4

26,7

27,9

460

6+

34

769

39,3

1001

38,1

36,5

29,7

31,2

619

7+

37

1018

38,9

32,2

Примечание: " * " Двухгодовики, трехгодовики и т.д.

Карась серебряный — Carassius auratus gibeliо (Bloch.). Стада его формировалось в лимане главным образом за счет вселенной молоди из других рыбхозов Молдавии и отчасти за счет местных поколений. В настоящее время оно включает особей 8 возрастных групп, не считая сеголеток (1-8-годовалые). Основу выловленных рыб составляют половозрелые оооби в возрасте от 2 лет и старше (81,9-89,6% численности всего стада) с преобладанием 3-4-летних особей. Эти воэрастные группы в 1967 г. составляли 72,9%, в 19б8 г. — 50, в 1969 г. — 54,9 и в 1970 г. — 51,2%. Численность местных генераций, в частности 1968-1969 гг., за последние два года не превышала 4,7-11,7%, что свидетельствует о слабом пополнении промысловых запасов карася за счет естественного воспроизводства.
Серебряный карась в возрасте от одного года и старше в лимане представлен особями длиной тела от 12 до 38 см. Вес карася колеблется от 70 до 2900 г. Основу промыслового стада составляют особи размером 12-16 (30,0%) и 22-32 см (43,3%).
Для серебряного карася трофические условия в лимане стали благоприятными благодаря освоению им самых различных биотопов лимана. Его спектр питания очень широкий — 80 пищевых компонентов, среди которых 33 формы зоопланктона со 100%-ной встречаемостью. Встречаемость компонентов зообентоса, главным образом тубифицид, нематод и хирономид увеличивается с 46,3% у молоди до 100% у старших возрастов. Широкая пищевая пластичность карася, близкая к всеядности, способствует достаточно интенсивному росту его, начиная с первого года жизни. Порционный характер нереста обусловливает очень большие пределы колебаний длины и веса сеголетней молоди, что особенно четко выражено в осенний период. В частности, размеры их колеблются от 4,8 до 12,5 (в среднем 8,8 см), а вес — от 4,5 до 51 г. (в среднем 26 г). В последующие годы жизни (табл.35) карась сохраняет высокий темп роста, даже в период после наступления половой зрелости. Так, пятилетки достигают средней длины 26,9 см и веса 696 г, шестилетки — 31,0 см и 965 г. и семилетки — 34,3 см и 1395 г. Он имеет также и более высокий коэффициент упитанности по сравнению с другими промысловыми рыбами лимана, который летом и осенью в среднем соответственно равен 2,9 и 3,4.
Серебряный карась в Кучурганскоком лимане растет менее интенсивно, чем в Дубоссарском и Катта-Курганском водохранилищах и опережает в росте (начиная с 4-го года жизни) кареся из Веселовского и Сенгилеевского водохранилищ (табл.35).
В настоящее время, несмотря на некоторое ухудшение линейного к весового роста карася по сравнению с периодом до зарегулирования стока лимана (Статова, 1968), его следует считать перспективным объектом культивирования в составе промысловой ихтиофауны.

Таблица 35

Линейный и весовой рост серебрянного карася в Кучурганском лимане-охладителе и некоторых водоемов СССР

Воз-
раст

лиман-
охлади-
тель
(1966-1970)

 

лиман до
зарегули-
рования,
(Статова,
1968)
Дубос-
сарское
водохр.
(Статова,
1968)
Веселовс-
кое водох-
ранилище (Иванова,
1955)
Сенгиле-
евское
водохр.
(Попова,
1962)
Катта-
Курганск.
водохр.
(Кемилов,
1960)

0+

8,8

26

10

31,7

10,3

35,5

10,9

49,55

11,3

11,8

1+

12,5

70

18,1

162,3

18,4

203

17,2

198,9

17,3

19,6

2+

18,3

219

21,7

338,5

21,8

390

20,5

298,3

21,4

24,3

3+

24

441

26,4

677,7

22,6

506

22,3

399

25,6

 

4+

26,9

696

29,2

830

27,3

773

24,3

491

42,3

43,6

5+

31

965

36,1

1125

 

24,9

569,9

27,1

 

6+

34,3

1395

 

 

Густера — Bliссa bjorkna (L.). В стаде густеры, начиная с 1968 г., преобладали поколения периода существования лииана-охладителя. Например, в 1968 г. генерации 1966-1967 гг. составляли 77,6%, в 1969 г. — 49,9 и в 1970 г. — 29,2% общей численности стада. Существенную роль играло поколение 1968 г., представлявшее в 1969 г. 21,8% и в 1970 г. — 18,3% стада. Вместе с тем в эти годы в промысле еще участвовали и поколения густеры до зарегулирования стока лимана (1963-1965 гг.): в 1969 г. — 28,3%, а в 1970 г. — 34,2%, что свидетельствует о недостаточно интенсивном отлове ее в лимане. Густера в уловах представлена особями от 1 до 7 лет с преобладанием 3-5-летних половоэрелых форм: длина тела — от 6 до 22 см, а вес — от 8 до 290 г. 28). Половозрелые особи густеры размером 8-12 (30,7%) и 12-18 см (48,6%) преобладали в уловах.
В условиях лимана-охладителя густера, так же, как и тарань, размером тела до 14 см питается главным образом растительной пищей (91,1-99% по весу), очень слабо используя донную фауну, составляющую лишь 4,5% веса пищи. Однако это не повлияло отрицательно на ее темпе роста, который по сравнению с периодом до зарегулирования стока лимана остался без изменений (табл.36).
Среди основных промысловых карповых рыб лимана густера является наиболее тугорослой. В частности, трехлетки имеют среднюю длину 9,2 см и вес 19,2 г. а чехырехлеткн — 13,7 см и 66 г. Восьмилетки густеры в среднем достигают лишь 21,2 см длины и 258 г веса. Линейные показатели густеры Кучурганского лимана выше, чем у популяций из низовья Южного Буга и Куйбышевского водохранилнща, уступая лишь густеpe Днепровского водохранилища (табл.36). По упитанности густера близка к тарани. Средний козффициент ее упитанности за летне-осенний период равен 2,1, то есть выше, чем у леща, что свидетельствует о благоприятных условиях нагула ее в лимане-охладителе.

Таблица 36

Линейный и весовой рост густеры в Кучурганском-лимане-охладителе и некоторых водоемах Юга СССР

Воз-
раст

лиман-
охлади-
тель
(1966-1970)

 

лиман до
зарегули-
рования,
(наши
данные за
1964-1965)
Низовье
Южного
Буга,
Щербуха
1965
Центр. плес

Куйбышев-
ского
водохран.
(Хузеева,
1960)
Днепровское

водохран.
(Короткий,
1948)

0+

5,9

4,9

 

 

 

 

1+

7,2

8,2

6,4

8,2

 

4,8*

6,3*

2+

9,2

19,2

8,1

12,5

 

9,5

10,3

3+

13,7

66

14,5

66,5

11,7

12,2

15,3

4+

16,8

101

17

110

14

13,2

18,7

5+

18

135

 

 

15,1

16,3

21,1

6+

19,3

185

15,9

16,5

24,6

7+

21,2

258

17

18,5

Примечание: " * " Годовики, двухгодовики и т.д.

Красноперка — Sсardinius еrythropthalmus (L.). Кроме сеголеток, в уловах представлена особями в возрасте 1-6 лет. Основу промыслового стада составляют 1-3-годоввлые рыбы: в 1967 г. — 94,3%, в 1968 г. — 79,1, в 1969 г. — 75,6 и в 1970 г. — 75,9 % всех выловленных особей. Пополнение запасов красноперки в лимане-охладителе в достаточной мере обеспечивается естественным ее воспроизводством. Это подтверждается значительным удельным весом в стаде поколений 1967-1969 гг. Только поколение 1968 г. в 1969 и 1970 гг. соответственно составляло 38,5 и 31,3% общей численности стада.
Размеры красноперки колебались от 6 до 28 см, а вес от 10 до 460 г. Характерно преобладание особей следующих размерных групп: 6-10 (47,7%) и 14 -18 см (26%). Численность красноперки с длиной тела более 20 см не превышала 6,3% общего количества исследуемых рыб.
Как типичный фитофаг красноперка в лимане находится в особенно благоприятных условиях нагула. Темп роста ее по сравнению с годами, предшествующими эарегулированию стока лимана (1964-1965 гг.), остался почти на том же уровне (табл. 37).
Однако no сравнению с периодом 1922-1925 гг. (Егерман, 1926) рост ее в лимане стал более ускоренным. Она растет лучше, чем плотва и густера, поэтому является немаловажным компонентом в составе промысловой туводной ихтиофауны, как один из потребителей обильно развитой здесь высшей и низшей водной растительности (пищевые комки особей длиной тела до 17 см почти не 100% состоят из растительных кормов).
В первые два года жизни красноперка характеризуется более замедленным ростом, чем в условиях р. Прут (Попа, 1967). Начиная с четырехлетнего возраста (табл.37) она опережает в росте красноперку из низовья Южного Буга (Щербуха, 1965).
Красноперка имеет более высокий коэффициент упитанности, чем другие промысловые карповые рыбы. В среднем за летне-осенний период коэффициент ее упитанности по Фультону находится в пределах 2-2,1.

Таблица 37

Линейный и весовой рост красноперки в Кучурганском лимане-охладителе и некоторых водоемах Юга СССР

Воз-
раст

лиман-
охладитель
1966-1970

 

лиман до
зарегулирования
Низовье
Южного
Буга,
Щербуха
1965
р. Прут (Попа,1967)
наши
данные за
1964-1965
Егерман,
1926

0+

6,2

6

 

 

1+

7,3

10,3

8,4

13,6

6,8

6

11,9

41,3

2+

11,3

51

12

44

9,5

20

 

13,2

54,2

3+

16

116

15,3

77,6

12,7

49

15,9

 

4+

19,6

159

 

17,2

114

17,8

 

5+

21,9

257

 

21,4

114

 

 

6+

24,6

417

 

20,9

Линь — Tinсa tinea L. Стадо его в лимане немногочисленно и состоит из особей в возрасте от 1 до 8 лет, не считая сеголеток, однако уловы определяются пока еще более взрослыми рыбами (старше 4 лет) поколений до зарегулирования стока лимана. В частности, в 1970 г. лини в возрасте 5-8 лет в уловах представляли 62,5% всех особей. В целом основу промысла составляли рыбы в возрасте 3-6 лет. Незначительный процент молодых линей в уловах свидетельствует о недостаточном пополнении его запасов за счет естественного нереста.
Размеры линя в лимане варьируют от 14 до 40 см, а вес от 26 до 1440 г. Доминирующее положение в настоящее время еще сохраняется за особями с длиной тела от 18 до 30 см (75,3%).
Из рыб бентофагов кормовые потребности линя в Кучурганском лимане-охладителе удовлетворяются в наибольшей степени, так как в отличие от других рыб он потребляет и богато представленных моллюсков. Это положительно сказалось на темпе его роста, который по сравнению с периодом до зарегулирования стока лимана ускорился (табл.38). Так, двухлетки имеют среднюю длину 9,8 см и вес 26,6 г, трехлетки — 14,7 см и 70,3 г и т.д. Девятилетки линя достигают средней длины 36,3 см и 1175 г веса.
Наряду с хорошим темпом роста линь характеризуется и достаточно высоким коэффициентом упитанности, который к концу вегетационного периода колеблется от 2 до 2,4, в среднем — 2,2.
Средние линейные показатели линя Кучурганского лимана для всех возрастных групп выше, чем, например, у популяции из верхнего течения Днестра (Опалатенко, 1967) и Килийской дельты Дуная (Мороз, 1968).

Таблица 38

Линейный и весовой рост линя в Кучурганском лимане-охладителе и некоторых водоемах Юга СССР

Воз-
раст

лиман-
охлади-
тель
(1966-1970)

 

лиман до
зарегулирования,
(наши данные за
1964-1965)
Низовье Днестра
(Опалатенко,
1967)
Килийская
дельта Дуная
(Мороз, 1968)

1+

9,8

26,6

 

 

6,2

 

2+

14,7

70,3

13,8

48

12,4

12,7

3+

18,7

161

16,4

105

16,5

17,7

4+

22,3

303

20,5

225

19

21,3

5+

25,3

448

24,7

399

 

25,1

6+

29,9

671

26,5

492

 

28,6

7+

34,1

966

8+

36,3

1175

Из изложенного следует, что если до зарегулирования стока лимана стадо рыб в основном пополнялось в результате случайного захода рыбы из Турунчука, то в настоящее время за счет местных поколений успешно формируется промысловое стадо леща и тарани из ценных рыб и густеры, окуня, красноперки — из малоценных. Удовлетворительным можно считать и ход формирования запасов щуки и линя. Стада указанных рыб состоят главным образом из особей периода существования лимана-охладителя, что свидетельствует о возможности создания в нем промысловых запсов этих видов.
Основной костяк стада судака состоит из особей младших возрастов, попавших в лиман в период паводков из Турунчука в 1969 г., которые и в дальнейшем окажут основное влияние на формирование его промыслового стада.
Местные поколения серебряного карася в лимане являются маломощными и не оказывают существенного влияния не формирование его промысловых запасов. Стада судака и серебряного карася могут достичь промысловой численности лишь при условии ежегодного зарыбления лимана молодью из рыбопитомников. Отмеченное в равной степени относится и к карпу, промысловые запасы которого в лимане весьма ограниченны.
Сведения о размерно-возрастном составе также показывают небходимость более строгой охраны неполовозрелых особей леща, тарани, судака и серебряного карася с целью создания значительного запаса их производителей в лимане.
Из данных о характеристике темпа роста рыб следует, что изменения некоторых абиотических (главным образом температурный режим) и биотических условий (плотность кормовых гидробионтов и самих рыб) по-разному влияли на интенсивность их роста.
По сравнению с годами, предшествующими зарегулированию стока лимана, наблюдается некоторое ухудшение темпа роста у серебряного карася, щуки и окуня, что, вероятно, связано с измененным температурным режимом и условиями нагула. Аналогичный факт замедления темпа роста у окуня и других рыб С. Донца под влиянием температурного режима в результате сбрса подогретых вод Луганской ГРЭС отмечает, в частности, А. Я. Щербуха (1970).
У леща, тарани, красноперки и густеры Кучургансного лимана темп роста сохранился почти прежним, а судак, линь и плотва растут более интенсивно.
В целом, несмотря на сравнительно высокую плотность наиболее массовых рыб только младших возрастов в лимане-охладителе., достигающую по примерным подсчетам около 8 тыс.экз./га, и отчасти недостаточную обеспеченность животными кормами, темп их роста можно считать вполне удовлетворительным, а для некоторых видов — даже хорошим. Этому в какой-то степени способствует благоприятный физико-химический режим лимана и некоторое увеличение продолжительности периода нагула рыб в связи со сдвигом нереста на более ранние сроки.
В перспективе в связи с намечаемымн мероприятиями по ограничению численности некоторых малоценных и сорных рыб, которые будут способствовать ослаблению пищевой конкуренции, можно ожидать некоторое ускорение линейного и весового роста основных промысловых рыб лимана — охладителя.

© 1973. Авторские права на статью принадлежат М.З.Владимирову и А.И.Набережному, в монографии «Кучурганский лиман-охладитель Молдавской ГРЭС» (Ин-т зоологии АН МССР)
Использование и копирование статьи разрешается с указанием автора и ссылкой на первоисточник HERALD HYDROBIOLOGY

Январь 2, 2010 Posted by | fish, Kuchurgan reservoir | , , , , , , , , , , , , , , , , , , , | Оставьте комментарий

Культивирование коловраток и мелких ветвистоусых ракообразных

Некоторые вопросы интенсификации процесса культивирования коловраток и мелких ветвистоусых ракообразных
Проблема поиска и совершенствования технологической схемы культивирования мелких беспозвоночных, как «стартового» корма для подращивания личинок рыб, несмотря на определенные успехи, не теряет своей актуальности в связи с дальнейшим развитием рыбоводства и переходом на индустриальные методы выращивания рыбы. Подтверждением может служить тот факт, что использование имевшихся разработок по культивированию коловраток и мелких ветвистоусых в производственных масштабах оказалось малоэффективным. В настоящее время трудно назвать рыбоводный завод или специализированный цех по воспроизводству рыб, где было бы организовано промышленное подращивание личинок рыб на культивируемых мелких ракообразных и коловратках.
Не разработана и рецептура искусственных кормов для личинок рыб на первых этапах их постембрионального развития. Попытки же замены живых кормов водородными бактериями, белково-витаминным концентратом и другими кормосмесямн не дали положительных результатов (Баранова, Галкина, Сахаров, 1979; Дементьев, 1979; Кражан и др. 1979). Рискован метод отлова зоопланктона для кормления личинок рыб непосредственно из водоемов. Как справедливо отмечают Л. Я. Алдакимова, Н. Х. Идрисова, Е. И. Аксенова (1979), он не обеспечивает стабильного количества коловраток и мелких ветвистоусых, а в периоды массового развития хищных форм веслоногих может нанести ощутимый вред подращиванию личинок.
Поэтому метод искусственного культивирования беспозвоночных, в частности коловраток и мелких ветвистоуснх ракообразных, остается более надежным и перспективным, особенно в условиях раннего получения личинок. В этом плане, наряду с дальнейшими изысканиями эффективных способов культивирования, предстоит решить ряд организационных вопросов, в первую очередь подготовки квалифицированных кадров.
Проведенные вами исследования были направлены на совершенствование технологической схемы культивирования коловратки Brachionus rubens и ветвистоусого рачка Moina mасгосора. Они наиболее перспективны для промышленного культивирования и скармливания личинкам рыб в первые 12-15 дней жизни последних. Предусматривался поиск новых субстратов и кормовых смесей с целью повышения трофической обеспеченности выращиваемых гидробионтов и оптимизации технологической схемы культивирования брахионуса и моины.

Общие сведения об объектах культивирования
Moina mасгосора Straus (Crustacea, Cladoсera).
Широко paспространенный вид, живет во всех зоогеографических областях. В Молдавии встречается почти повсеместно, однако массового развития достигает в прудах и мелких временных водоемах, особенно если они сильно загрязнены органикой, устойчив к изменению содержания кислорода в воде и степени ее минерализации. О толерантности к повышенному загрязнению свидетельствует массовое развитие в городских очистных сооружениях. В частности, в аэротенках очистных сооружений г. Тирасполя, по нашим наблюдениям, численность Mоina macrocoра достигала 36,0 млн./м³, биомасса — 2,1 кг. Уcтойчив к колебаниям температуры в диапазоне 5-30°. Полная гибель наступает при 41-43° (Аскеров, 1960)..
Характеризуется биологическими особенностями, ценными для массового культивирования. Это один из наиболее быстрорастущих видов ветвистоусых ракообразных, обладающих коротким жизненным циклом и способностью существовать при большой плотности. В естественных условиях самки откладывают до 64 яиц, срок развития которых при температуре 30-35° составляет 1,4-2, а при 20° — 4,8 суток. Достигает половой зрелости при температуре 26,5-28,0° на 2,5-3 сутки. Максимальная продолжительность жизни — 2 месяца. В этот период самки многократно дают пометы, насчитывающие до 30 эмбрионов, с интервалом 2-3 дня.
Питается дрожжами, бактериофлорой и мелкими микроводорослями. Длина самки примерно 1 мм.
Brachionus rubens Еhrenberg (Rotatoria).
Распространен повсеместно в умеренных и южных широтах, часто встречается в массе.
Свободноживущий организм, но только в сильно эвтрофированных водоемах, комменсал на поверхности тела ветвистоусых, что подтвердили проведенные нами опыты с Moina mасгосора (на теле одной моины поселялись до 60 особей брахионуса). В таких случаях у рачков снижается подвижность и полностью прекращается размножение. Поэтому при культивировании моины следует принимать меры, предупреждающие попадание брахионуса в культиваторы.
Брахионус принадлежит к числу наиболее перспективных для массового разведения коловраток. Устойчив к дефициту кислорода в воде, ее органическому загрязнению, к большим колебаниям температуры (оптимум — 25-28°). Обладает высокой скоростью воспроизводства. По данным наших наблюдений, прирост численности от 5 экз. брахионуса в течении 10 дней при температуре 26°С составил в среднем 245 экз. (максимум 295, минимум 199). Продолжительность жизни температуре воды 21-24° — 4-7 дней. За это время самкн откладывают 11-27 яиц.
Активный фильтратор, питается бактериями и мелким фитопланктоном. Длина панциря 154-275, ширина — 110-203 мк.

Поиск новых субстратов и кормовых смесей
Одним из ведущих факторов, определяющих успех культивирования брахионуса и моины, является полное удовлетворение их пищевых потребностей бактериофлорой и микроводорослями, а также обеспечение других благоприятных условий обитания.
До последнего времени для стимуляции развития бактериофлоры в культуральной среде широко использовали кормовые (гидролизные) дрожжи. Однако, как показывает опыт, применение их даже в высоких дозах малоэффективно и нерентабельно. В связи с этим, одной из первоочередных задач наших исследований был поиск новых субстратов и кормовых смесей и выяснение их оптимального соотношения. Проверяли эффективность использования кормовых дрожжей, обогащенных 6% лизином, глютена кукурузного сухого, сухих каротиноидных дрожжей, кукурузного экстракта в хлореллы. Все они, за исключением хлореллы, — хорошие стимуляторы развития бактериофлоры в культуральной среде. Не исключена возможность регенерации части клеток дрожжей, которые могли быть использованы непосредственно в питании культивируемыми гидробионтами.
Используемый кукурузный экстракт содержит примерно 40% действующего вещества. В глютене кукурузном сухом примерно 50% протеина, биологическая ценность которого по индексу незаменимых кислот теоретически составляет 57% (Горбатенький, Коварский, Бодрова 1979).
Проблема добавок хлореллы и других видов протококковых водорослей в рацион культивируемых видов коловраток и ветвистоусых не нова. Известно, что еще Н. С. Гаевская (1941) на примере дафний, убедительно показала эффективность протококковых водорослей в качестве добавок к бактериально-дрожжевой смеси. Это подтвердилось исследованиями, проводившимися в последние годы на других видах беспозвоночных. Тем не менее нормативы оптимальной концентрации хлореллы в культуральной среде на различных этапах культивирования того или иного вида безпозвоночных отсутствуют. Произвольное применение повышенных концентраций хлореллы может привести к перенасыщению культуральной среды кислородом и гибели рачков вод влиянием токсичности продуктов ее жизнедеятельности. В этом отношении особенно опасны стареющие культуры хлореллы, выделяющие антибиотик хлораллин, подавляющий не только развитие дафнии, но развитие самой хлореллы. Дафнии на таких культурах растут медленно, живут всего 11-13 дней и погибают, не достигнув половозрлости. (Богатова, 1971; Антипчук, Кражан, Литвинова, Мущак, 1979).Установлено также, что не все виды и штаммы хлореллы пригодны для скармливания беспозвоночным.
Мы использовали культуры местного штамма Chlorella vulgaris, биотехника культивирования которого разработана в лаборатории экологии водных беспозвоночных Института зоологии и физиологии АН МССР.
Первоначально проверяли эффективность следующих кормовых смесей (пищевых субстратов): кормовые дрожжи (25%) + глютен (75%) + хлорелла; кормовые дрожжи (60%) + глютен (20%) + биокомплекс (20%) + хлорелла; кормовые дрожжи (80%) + глютен (20%) + хлорелла; кормовые дрожжи (100%) + хлорелла.
Один вариант опыта проводили на чистой культуре хлореллы, другой — на глютене. Контролем служили те же кормосмеси, но 6eз примеси хлореллы. За критерии полноценности кормовых смесей принимали продолжительность жизни Daphnia magna и Ceriodaphnia affiniа, сроки достижения ими половозрелости, количество выводков в течении жизни и общую плодовитость. Рачков кормили из расчета 10 мг/ кормосмеси и 1,2-2,0 млн.кл/мл хлореллы.
Проведенный опыт позволил выделить как наиболее полноценную кормосмесь № 2. В этом отношении показательны данные, приведении в табл.1. Аналогичное подтвердилось и в опытах с цериодафнией. Заслуживает внимания вариант, в котором дафний содержали на смеси кормовых дрожжей с хлореллой. По всем принятым показателям они практически не уступали особям предыдущего варианта. Это позволило нам использовать данную смесь в дальнейшей работе.

Таблица 1

Эффективность использования различных кормосмесей

Вариант продолжи-
тельность
жизни,дн.
кол-во
выводков,
шт.
общая
плодови —
тость
Daphnia magna
опыт Смесь №1+хлорелла 51 16 864
Смесь №2+хлорелла 55 17 1007
Смесь №3+хлорелла 49 15 875
Кормовые дрожжи +
хлорелла
51 16 958
контроль Хлорелла 55 16 757
Глютен 26 10 116
Смесь №1+хлорелла 40 7 238
Смесь №2+хлорелла 26 9 202
Смесь №3+хлорелла 34 9 240
Кормовые дрожжи 33 6 233
Ceriodaphnia affinis
опыт Смесь №1+хлорелла 19 8 78
Смесь №2+хлорелла 23 8 89
Смесь №3+хлорелла 14 5 44
Кормовые дрожжи +
хлорелла
19 7 73
контроль Хлорелла 16 4 25
Смесь №1 27 9 48
Смесь №2 26 9 61
Кормовые дрожжи 27 10 60

Насколько существенна роль хлореллы при культивировании ветвистоусых видно из результатов контрольных вариантов. При использовании всех трех смесей, без примеси хлореллы, продолжительность жизни дафний, количество выводков и общая их плодовитость заметно уступали таковым в вариантах. Более высокие показатели получены в варианте с кормлением дафний чистой культурой хлореллы. Не oправдало себя кормление дафний и одними дрожжами (табл. 1). Эти результаты подтвердились в опытах с мойной и брахионусом. Например, прирост общей численности моины при кормлении одними дрожками был в 8,4, а брахионуса — в 22 раза ниже, чем в варианте кормления гидролизными дрожжами с примесью хлореллы. В обоих случаях дрожжи вносили из расчета 10 мг/л, а хлореллу — 1,5-2,0 млн.кл/мл. Близкие результаты дало использование одних каратиноидных дрожжей для культивирования моины (табл.2). В этом случае ее суммарная биомасса была в 4,5 раза ниже, чем в условиях кормления каратиноидными дрожжами (5 мг/л) и хлореллой (1,5-2,0 млн. кл/мл).

Таблица 2

Выход биомассы моины в опытах с катариноидными дрожжами, г/м³

дни
съема
Каратиноидные
дрожжи
Каратиноидные
дрожжи +
хлорелла
1 44,0 100,0
2 22,0 122,5
3 30,0 77,5
4 10,0 60,0
5 20,0 100,0
6 12,5 50,0
7 9,0 55,0
8 9,0 55,0
9 5,0 40,0
10 13,3 116,6

Помимо всего, с хлореллой в культиваторы вносится масса микроорганизмов (до 650 млн.кл/мл) (Пименова, Максимова, Балицкая, 1962), что также положительно отражается на трофической обеспеченности культивируемого объекта.
Предпринимали попытки выяснить действие каждого из компонентов предложенных стимуляторов на рост микрофлоры. Количественный ее учет проводили в водных эмульсиях до внесения их в культиваторы, а также непосредственно в культуральной среде в период культивирования моины.
Для приготовления водной эмульсии дневную дозу стимулятора, рассчитанную на весь объем культиватора (40 л), разбавляли в 100 мл воды и выдерживали 22-24 ч.
Установлено, что в водных эмульсиях, приготовленных из гидролизных дрожжей из расчета 10-12 мг/л, общее число бактерий, через 24-26 часов составляло в среднем 0,6 млн.кл/мл. Не менее эффективными стимуляторами оказались кукурузный экстракт и каратиноидные дрожжи, несмотря на то, что дозировки каждого из них были в 2 раза ниже. Например, в водных эмульсиях кукурузного экстракта, приготовленных из расчета 5 мг/л численность бактерий достигала 0,5, а каратиноидных дрожжей (5 мг/л) — 0,4 млн.кл/мл. Внесение их в культуральную среду позволяло поддерживать трофическую обеспеченность брахионуса и моины на достаточно высоком уровне. Например, уже в 1-й день культивирования моины после внесения кормосмеси в культиваторы общее число бактерий составляло 116,8-119,7 млн. кл/мл. На 7-й день ее культивирования численность их примерно удвоилась (206,1-290,4 млн.кл/мл). Такой же уровень развития бактериофлоры (в среднем 223,7 млн.) сохранился и на 11-й день опыта несмотря на то, что общая биомасса моины к этому времени увеличилась в 13,6 раза.
Мы не проводили учета бактериофлоры в опытах по культивированию брахионуса, предполагая, что количественный уровень его развития не должен сильно отличаться от вышеприведенного. На основании полученных результатов установлено, что для стимуляции роста бактериофлоры при культивировании брахионуса и моины наиболее рационально использовать смеси из кормовых (гидролизных) дрожжей, обогащенных 6%-ным лизином, из расчета 10 мг/л, кукурузного экстракта — 5 мг/л, каратиноидных дрожжей — 5 мг/л и хлореллы — 1,5-2,0 млн.кл/мл. Каждый компонент необходимо замачивать за 20-24 часа до внесения в культиваторы, хлореллу добавлять ежедневно в свежем виде.

Оптимизация технологической схемы
Получение маточных культур.
Маточные культуры моины и брахионуса наиболее целесообразно готовить раздельно. Мы применяли высушенные покоящиеся яйца обоих видов, заготовленные заблаговременно. Как показал опыт, эфиппии или покоящиеся яйца после высушивания при температуре 35-40° сохраняют жизнеспособность минимум 2 года. Это позволяет работать с одним и тем же клоном, воспитанным в условиях предложенной нами схемы культивирования.
Необходимо уделять особое внимание заготовке покоящихся яиц ветвистоуснх рачков и коловраток в специализированных цехах по их культивированию, как исходному материалу для проведения последующих работ. Для этих целей в сосудах объемом не менее 3-5 л (можно и в 50-60-литровых аквариумах) создают насыщенную чистую культуру коловратки или рачка. Когда популяция достигает высокой плотности, резко ухудшают условия содержания (прекращают кормление, снижают температуру среды), что приводит в последующие 2-3 дня к образованию эфиппий у ветвистоуснх и амиктических самок у коловраток. Осадок фильтруют (каждый вид в отдельности) через густую ткань, затем переносят в чашку Петри, где раскладывают тонким слоем и высушивают при температуре 35-40°. Фильтрат помещают в бюксы, этикетируют и хранят в сухом виде.
Для получения исходной культуры того или иного вида, небольшое количество покоящихся яиц (5-10 мг) вносят в стаканы с водой объемом 50 мл, которые помещаются в сушильный шкаф с температурой 24-26°С. Период развития яиц обоих видов — примерно 3-4 дня. За день до выклева молоди, для удовлетворения ее пищевых потребностей, в стаканы вносят культуру хлореллы из расчета 2-2,5 млн.кл/мл. Молодь рассаживают первоначально в небольшие сосуды (100-150 мл), а по мере роста численности, в зависимости от потребностей цеха в маточной культуре, переносят в большие емкости. Исходный материал для приготовления маточной культуры можно получить и путем отлова в прудах, водохранилищах и других водоемах. Наиболее рационально использовать воду из естественного водоема. Она должна отвечать
санитарно-гидрохимическим требованиям. Для освобождения воды oт простейших, мелких коловраток и их яиц, проходящих через самую густую ткань, целесообразно предварительно ее подогреть до 55-60°, а затем охладить до необходимого уровня. Таким образом обеспечивается сохранение маточных культур в относительно чистой среде не менее 5-7 дней, т.е. периода достижение предельной концентрации.
Чем выше начальная плотность гидробионта при подготовке маточной культуры, тем меньше время ее созревания. Это позволяет готовить маточные культуры в предельно сжатые сроки. Концентрация моины к концу подготовки должна достигнуть 7-8, брахионуса — 120-130 экз./мл.
Растянутый период приготовления маточных культур приводят к неизбежному их засорению мелкими простейшими (циклидиум, еуплотес и стилонихия)и коловратками (ротария, лепаделла, лекане), которые обостряют пищевую конкуренцию и загрязняют культуральную среду продуктами метаболизма. Все это приводит к угнетению маточной культуры основных объектов, снижению их плодовитости, появлению самцов, эфиппиальных самок моины и амиктических — брахионуса, а в итоге к потере культуры.
В процессе подготовки маточных культур, в целях равномерной обеспеченности пищевых потребностей культивируемых гидробионтов, суточную норму корма вносили в культиваторы в 4 приема с б до 23 ч.

Режим температуры и кормления.
Одним на первостепенных условий, обеспечивающих успешное культивирование брахионуса и моины, является температура культуральной среды. В руководствах по разведению коловраток и ветвистоусых ракообразных оптимальной считается 24-26°С. Учитывая высокую толерантность Вгасhionus и Moina mасгосора к температуре среды обитания, мы работали в диапазоне 26-28,0°C. Экспериментальные данные и опытно-производственная проверка показали, что такие температурные пределы обеспечивали наиболее высокий прирост биомассы обоих видов гидробионтов, поэтому мы предлагаем включить их в технологическую oxei культивирования брахионуса и моины.
Естественно, что более интенсивный прирост биомассы брахионуса я моины, происходящий о повышением температуры в культиватоpax на 1,5-2,0°, потребовал внести некоторые коррективы в режим их кормления. К сожалению, этому важному вопросу до последнего времени не уделялось должного внимания. Показательны в этом отношении приведенные в литературе примеры кормления культивируемых гидробионтов от одного раза в 4-5 дней до 12 раз в сутки.
Мы практиковали кормление моины и брахионуса в 4 приема (6.30-7.00, 11.30-12.00, 17.30-18.00, 20.00-22.30). Благодаря этому трофические потребности культивируемого объекта удовлетворялись течение суток равномерно, что в целом положительно отразилось на результатах культивирования. При автоматизации процесса кормление следует проводить 6 раз в интервале от 6.00-24.00, т.е. каждые 4 часа.
В связи с большой насыщенностью культуральной среды органикой обязательным условием культивирования является многократная ее аэрация (15-20 мин. каждые 3 ч) распылением струи воздуха по дну культиватора. Это способствует не только обогащению культуральной среды кислородом, но и ее перемешиванию. Технически аэрация культиваторов может осуществляться по-разному. Мы пользовались аквариальным микрокомпрессором BK-I, вполне обеспечивавшим аэрацию 0,5 м3 среды.
Продолжительность процесса культивирования при разовой зарядке культиваторов брахионусом или моиной не должна превышать 14-16 дней (5-6 дней — накопительный период и 9-10 — ежедневные съемы продукции). Более длительное время содержать культуры нерационально. Подобно маточным культурам они засоряются, иногда в массе, мелкими простейшими и коловратками, несмотря на самое тщательное фильтрование воды. Для частичного удаления их и продуктов метаболизма, накапливающихся в избытке в культуральной среде, целесообразно практиковать замену одной трети объема культиваторов свежей средой во время каждого третьего съема биомассы. Заряжать культиваторы маточными культурами следует с таким расчетом, чтобы на накопительный период затрачивался минимум времени. Мы исходили из расчета не менее 20-25 г/м³ брахионуса и 60-70 г/м³ моины.
За двое суток до внесения маточной культуры, культиватора заливали отстоянной и процеженной через шелковый газ (№68) водой, что предотвращало попадание в культиваторы крупных гидробионтов. В это жe время подавали кормовую смесь, ко дню внесения маточной культуры создававшую благоприятные трофические условия. Хлореллу вводили в культиваторы зa день до маточной культуры. Если поддерживать в них условия, соответствующие параметру предлагаемой схемы культивирования, период достижения максимального уровня развития и брахионуса, и моины можно сократить до 5-6 дней.
Вышеописанные кормовые смеси и технологические приемы культивирования брахионуса и моины испытывали как в лабораторных опытах, так и в полупроизводственных условиях.
Опыты проводили в 40-60-литровых аквариумах на отстоянной водопроводной воде. Маточную культуру, моины интродуцировали из расчета 32,0-44,6 г/м³ (табл.3), брахионуса — 18,0-20,0 г/м³ (табл.4). Температуру культуральной среды поддерживали в пределах 26,0-28,0 С. Барботаж культуры — непрерывный. Кормление — 3 раза в день. Биомассу брахионуса в культиваторах устанавливали расчетным путем, перемножая вес одной особи (0,002 мг) на количество особей в oдном миллилитре. Таким же способом рассчитывали биомассу моины.
Вес (V) разноразмерных групп определяли по уравнению, приведенному Н. М. Крючковой, В. Г. Кондратюк (1961), Л. А. Лебедевой (1968), (а = 0,0081; b = 3,0; l — длина тела, мм).

Биомассу моины определяли также непосредственным взвешиванием фильтрата после доведения его до условно сырого состояния.

Таблица 3

Динамика биомассы моины в различных условиях культивирования

Параметры культивирования варианты кормосмеси
I II III
Температура °C 26-28 26-28 26-28
Биомасса маточной культуры при зарядке культиваторов, г/м³ 32,0 44,6 37,6
Время накопительного периода культуры, дни 7 4 5
Величины биомассы рачка в культиваторах в дни ее съема, г/м³ 1 420,0 365,0 377,0
2 408,5 315,0 341,0
3 375,0 247,0 298,0
4 362,0 272,0 287,0
5 343,0 237,0 265,0
6 320,0 292,0 343,0
7 328,0 218,0 275,0
8 315,0 235,0 238,0
9 227,0 261,0
Среднесуточная биомасса, г/м³ 358,9 267,5 298,3
Среднесуточный прирост биомассы, % от общей величины 46,1 41,6 41,7

Примечание: I — гидролизные дрожжи — 10 мг/л; каротиновые дрожжи — 5 мг/л; кукурузный экстракт — 5 мг/л; хлорелла — 2,0 млн.кл/мл; II — гидролизные дрожжи — 10 мг/л; кукурузный экстракт — 10 мг/л; хлорелла — 1,5-2,0 млн.кл/мл; III — гидролизные дрожжи — 10 мг/л; кукурузный экстракт — 20 мг/л; хлорелла — 1,5-2,0 млн.кл/мл.

Как видно из данных табл.3, более высокие показатели биомассы (в среднем 358,9 г/м3) получены в варианте, где в качестве кормовых субстратов использовали все три компонента предлагаемой кормосмеси. При этом следует учесть, что исходное состояние культуры в данной варианте было заметно ниже, чем в остальных двух, чем, по-видимому, объясняется и более продолжительный накопительный период культуры до достижения стационарной фазы. Однако, более удовлетворительная трофическая обеспеченность культуры способствовала более высокому темпу прироста продукции, равному в этой серии опытов в среднем 46,1% от общей биомассы моины, при максимуме 49,4 и минимуме 37,7%.
Во втором варианте опытов из состава кормосмеси были изъяты каратиноидные дрожжи, которые компенсировали повышением концентрации кукурузного экстракта до 10 мг/л. Кроме того, биомасса маточной культуры моины при зарядке культиваторов составляла 44,6 г/м³. Несмотря на это, среднесуточная биомасса равнялась всего 367,5г/м³, что примерно в 1,3 раза ниже, чем в предыдущем варианте.
В третьем варианте увеличили концентрацию кукурузного экстракта до 20 мг/л, но уменьшили вес маточной культуры при зарядке культиваторов до 37,5 г/м³. В результате среднесуточная биомасса моины повысилась до 298,3 г/м³.

 

Таблица 4

Динамика биомассы брахионуса в различных условиях культивирования

Параметры культивирования варианты кормосмеси
I II
Температура °C 26-28 26-28
Биомасса маточной культуры при зарядке культиваторов, г/м³ 18,0 20,0
Время накопительного периода культуры, дни 5 5
Величины биомассы брахионуса в культиваторах в дни ее съема, г/м³ 1 220,0 204,0
2 222,0 236,0
3 202,0 186,0
4 192,0 116,0
5 180,0 102,0
6 186,7 100,0
7 168,4
8 168,5
Среднесуточная биомасса, г/м³ 192,0 157,0
Среднесуточный прирост биомассы, % от общей биомассы 44,6 36,6

Примечание: I — гидролизные дрожжи — 10 мг/л; кукурузный экстракт — 5 мг/л; каратиновые дрожжи — 5 мг/л; хлорелла — 1,5-2,0 млн.кл/мл; II — гидролизные дрожжи — 10 мг/л; кукурузный экстракт — 20 мг/л; хлорелла — 1,5-2,0 млн.кл/мл.

 

В опытах с брахионусом получены сходные результаты. Как видно из табл.4, более высокая биомасса (в среднем 192,0 г/м³) также была зарегистрирована при использовании всех 4 компонентов предложенной кормосмеси. И в данном случае исходная биомасса маточной культуры была ниже (18 г/м³), чем во втором варианте опыта. По-видимому повышенная трофическая обеспеченность брахионуса и обусловила более интенсивный темп продуцирования, составивший в среднем 44,6% от общей биомассы. В условиях более высокой исходной биомассы брахионуса (20 г/м³), но в отсутствии каратиноидных дрожжей, темп продуцирования биомассы снизился в среднем за сутки до 36,6% от общей биомассы, что не могло не oтразиться и на величинах биомассы в целом.
В 1978 г., например, величины биомассы брахионуса лишь в конце культивирования возросли до 125-135 г/м³. В первые же 7 дней стационарной фазы они не превышали 75,0 г/м³ (рис.1).

Рис. 1. Динамика биомассы Brachionus rubuns в культиваторах в дни съема. 1 — 1978 г.; 2 — 1979 г.; 3 — 1980 г.

В следующем 1979 г. среднесуточная биомасса 6paxuонуса в культиваторах повысилась по сравнению с 1978 г. в 1,8 раза, равняясь 132,0 г/м³, а ее динамика в период стационарной фазы изменялась в небольших пределах. В 1980 г. среднесуточная биомасса брахионуса достигла 157,0 г/м³. В динамике наблюдался неуклонный спад с 220-240 г/м³ в первые дни стационарной фазы до 170 г/м³ к концу ее.
Примерно аналогичная картина наблюдалась и при испытании схемы с моиной (рис. 2).


Рис.2. Динамика биомассы Moina macrocopa в культиваторах в дни съема. 1 — 1978 г.; 2 — 1979 г.; 3 — 1980 г.

Среднесуточная ее биомасса в культиваторах составляла 454,0-511,0 г/м³. В первые дни стационарной фазы биомасса моины достигала наиболее высоких показателей — 475,0-485,0 г/м³ в 1980 г. и 570,0-725,0 г/м³ в 1979 г.
Неуклонное снижение биомассы в культиваторах, по мере ее изъятия, по-видимому связано не только со «старением» самой культуры, но и с накоплением в культуральной среде продуктов метаболизма и сопутствующих мелких гидробионтов. По нашим подсчетам, биомасса их в культиваторах на 8-9-й день стационарной фазы, несмотря на принятые меры предосторожности, достигала 86,0-97,0 г/м³. К сожалению, способ изъятия этих мелких кормовых организмов с целью использования для подращивания личинок рыб на первых этапах их постэмбрионального развития не разработан.
Очевидно, для более рационального использования культиваторов необходимо изменить схему культивирования. Вместо проводимых ежедневных съемов части биомассы из всех культиваторов в период стационарной фазы предлагается доводить культуру до предельно возможной насыщенности и полностью ее отлавливать. Количество необходимых для эксплуатации культиваторов будет определяться ежедневными потребностями в живом корме.

ЛИТЕРАТУРА
Аскеров М. К. Биотехника разведения живых кормов на Куринском экспериментальном осетровом заводе. — В кн.: Материалы совещания по вопросам рыбоводства. М., 1960.
Аксенова Е. И., Алдакимова А. Я., Идрисова Н. Х. Перспективы индустриального разведения живых кормов в рыбоводстве. — В кн.: Материалы Всесоюзной научной конференции по направлению и интенсификации рыбоводства во внутренних водоемах Северного Кавказа. М., 1979.
Антипчук А. Ф., Кражан С. А., Литвинова П. А., Мущак П. А. Использование хлореллы при выращивании ветвистоусых ракообразных (Daphnia magna) в замкнутых системах. — Рыбное хозяйство, 1979, №28.
Баранова В. П., Галкина З. И., Сахаров A. M. Испытание белково-витаминных концентратов в качестве корма для личинок карпа, кн.: Выращивание молоди рыб на теплых водах. Л., 1979.
Богатова И. Б., Тагирова Н. А., Овинникова В. В. Руководство по мышленному культивированию в садках планктонных животных кормления личинок и молоди рыб. — М., 1975.
Богатова И. Б. Питание и пищевые взаимоотношения массовых форм прудового зоопланктона. — Вопросы прудового рыбоводства. 1971 т. ХУII.
Гаевская Н. С. 0 методах выращивания живого корма для рыб. Труды Моск.техн.ин-та рыб.пром. и хоз-ва, 1941, вып. 3.
Горбатенький Г. Г., Коварский В. А., Бодрова Э. П. О питательности кормового препарата глютен кукурузный сухой. — Изв. АН МССР, Сер. биол.и хим.наук, 1979, № 5.
Дементьев М. С. Применение сухих кормосмесей для кормления личин рыб. — Материалы Всесоюзной научной конференции по направлению и интенсификации рыбоводства во внутренних водоемах Северного Кавказа. М., 1979.
Кражан С. А., Антипчук А. Ф., Литвинова Т. Г. Опыт культивирования Daphnia magna Straus на комбикорме и гидролизных дрожжах. Рыбное хозяйство, 1979, № 29.
Крючкова Н. М., Кондратюк В. Г. Зависимость фильтрационного питания от температуры у некоторых представителей отряда витвистоусых ракообразных. ДАН БССР, 1966, 10, 2.
Лебедева Л. А. Рост, размножение и продукция кдадоцер водохранилища: Автореф. Дис…. канд.биол.наук. — М., 1968.
Пименова М. Н., Максимова Н. И., Балицкая P. M. Некоторые данные по составу сопутствующей микрофлоры при массовом культивировании водорослей в открытых бассейнах. — Микробиология, 1962, том 31, вып.2.

© 1983. Авторские права на статью принадлежат А.И.Набережному, С.Г.Ирмашевой (Ин-т зоологии и физиологии АН МССР)
Использование и копирование статьи разрешается с указанием автора и ссылкой на первоисточник HERALD HYDROBIOLOGY

Декабрь 11, 2009 Posted by | Moina, organisms cultivation, Rotatoria | , , , , , , , , , , , , , , , | Оставьте комментарий